Using light and electricity to study individual brain cells

False colour image of a rat brain

Light is a hot topic in biology at the moment and Peter Freestone, a post-doctoral researcher at the University of Auckland, is pioneering the use of optogenetics or light-based technology in New Zealand.

He is studying individual brain cells to find out how they communicate with each other, and he hopes that the research will improve our understanding of what happens to the brain of someone with Parkinson’s disease.

Peter is particularly interested in how two-way communication happens between neurons, and the role that endocannabinoids play in this.

“Endocannabinoids are cannabis-like substances that are produced naturally within the brain, and I’m looking to see how they control the flow of information between two cells.”

Brain cells communicate by passing a chemical neurotransmitter such as dopamine, glutamate or GABA across a synapse. Peter says this signal from ‘cell A’ might cause ‘cell B’ to increase in activity or quieten down.

“Endocannabinoids work in the opposite direction. ‘Cell B’ communicates back with ‘cell A’, and says ‘I heard your signal and I’m going to turn your signal off or maybe turn your signal up a little bit more.’ Endocannabinoids … are actually known as retrograde, because they’re going in the opposite direction from the normal flow.”

Peter says his ‘cell B’ are the ones that produce dopamine, and in particular ones that produce endocannabinoids especially a kind known as NADA.

Dopamine is an important neurotransmitter, and what happens in the brains of people with Parkinson’s disease is that the cells that produce dopamine degenerate so there is less dopamine.

“We are interested in the dopamine cells, as we want to see what signal they get in and see if we can somehow rescue or help the cells that survive and get them to produce more dopamine in [brains affected by Parkinsons].”


-more at RNZ


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s